47 research outputs found

    GDL today: Reaching a viable alternative to IDL

    Full text link
    We report at the ADASS XXVII session the progresses made by GDL, the free clone of the proprietary IDL software. We argue that GDL can replace IDL for everyday use.Comment: 4 pages. Contributed paper at the ADASS XXVII conference, held in Santiago de Chile, Chile, October 2017. Proceedings to be published in ASP Conf. Ser. 522, 641, Ballester, P. et al., Eds., 201

    Masses and age of the Chemically Peculiar double-lined binary χ\chi~Lupi

    Full text link
    We aim at measuring the stellar parameters of the two Chemically Peculiar components of the B9.5Vp HgMn + A2 Vm double-lined spectroscopic binary HD141556, whose period is 15.25 days. We combined historical radial velocity measurements with new spatially resolved astrometric observations from PIONIER/VLTI to reconstruct the three-dimensional orbit of the binary, and thus obtained the individual masses. We fit the available photometric points together with the flux ratios provided by interferometry to constrain the individual sizes, which we compared to predictions from evolutionary models.The individual masses of the components are \Ma = 2.84 \pm 0.12\ \Msun and \Mb = 1.94 \pm 0.09\ \Msun. The dynamical distance is compatible with the Hipparcos parallax. We find linear stellar radii of \Ra=2.85 \pm 0.15\ \Rsun and \Rb=1.75 \pm 0.18\ \Rsun. This result validates a posteriori the flux ratio used in previous detailed abundance studies. We determine a sub-solar initial metallicity Z=0.012±0.003Z=0.012\pm0.003 and an age of (2.8±0.3)×108 (2.8\pm0.3)\times10^8\ years. Our results imply that the primary rotates more slowly than its synchronous velocity, while the secondary is probably synchronous. We show that strong tidal coupling during the pre-main sequence evolution followed by a full decoupling at zero-age main sequence provides a plausible explanation for these very low rotation rates.Comment: 8 pages, accepted in Aand

    Phase Closure Nulling: results from the 2009 campaign

    Get PDF
    We present here a new observational technique, Phase Closure Nulling (PCN), which has the potential to obtain very high contrast detection and spectroscopy of faint companions to bright stars. PCN consists in measuring closure phases of fully resolved objects with a baseline triplet where one of the baselines crosses a null of the object visibility function. For scenes dominated by the presence of a stellar disk, the correlated flux of the star around nulls is essentially canceled out, and in these regions the signature of fainter, unresolved, scene object(s) dominates the imaginary part of the visibility in particular the closure phase. We present here the basics of the PCN method, the initial proof-of-concept observation, the envisioned science cases and report about the first observing campaign made on VLTI/AMBER and CHARA/MIRC using this technique.Comment: To be published in the proceedings of the SPIE'2010 conference on "Optical and Infrared Interferometry II

    The third version of the AMBER data reduction software

    Full text link
    We present the third release of the AMBER data reduction software by the JMMC. This software is based on core algorithms optimized after several years of operation. An optional graphic interface in a high level language allows the user to control the process step by step or in a completely automatic manner. Ongoing improvement is the implementation of a robust calibration scheme, making use of the full calibration sets available during the night. The output products are standard OI-FITS files, which can be used directly in high level software like model fitting or image reconstruction tools. The software performances are illustrated on a full data set of calibrators observed with AMBER during 5 years taken in various instrumental setup.Comment: To be published in the proceedings of the SPIE'2010 conference on "Optical and Infrared Interferometry II

    Building the 'JMMC Stellar Diameters Catalog' using SearchCal

    Get PDF
    11 pages, to be published in SPIE'2010 conference on "Optical and Infrared Interferometry II"The JMMC Calibrator Workgroup has long developed methods to ascertain the angular diameter of stars, and provides this expertise in the SearchCal software. SearchCal dynamically finds calibrators near science objects by querying CDS hosted catalogs according to observational parameters. Initially limited to bright objects (K magnitude ≤ 5.5), it has been upgraded with a new method providing calibrators without any magnitude limit but those of queried catalogs. We introduce here a new static catalog of stellar diameters, containing more than 38000 entries, obtained from SearchCal results aggregation on the whole celestial sphere, complete for all stars with HIPPARCOS parallaxes. We detail the methods and tools used to produce and study this catalog, and compare the static catalog approach with the dynamical querying provided by SearchCal engine. We also introduce a new Virtual Observatory service, enabling the reporting of, and querying about, stars flagged as "bad calibrators" by astronomers, adding this ever-growing database to our SearchCal service

    The 2010 Interferometric Imaging Beauty Contest

    Full text link
    We present the results of the fourth Optical/IR Interferometry Imaging Beauty Contest. The contest consists of blind imaging of test data sets derived from model sources and distributed in the OI-FITS format. The test data consists of spectral data sets on an object "observed" in the infrared with spectral resolution. There were 4 different algorithms competing this time: BSMEM the Bispectrum Maximum Entropy Method by Young, Baron & Buscher; RPR the Recursive Phase Reconstruction by Rengaswamy; SQUEEZE a Markov Chain Monte Carlo algorithm by Baron, Monnier & Kloppenborg; and, WISARD the Weak-phase Interferometric Sample Alternating Reconstruction Device by Vannier & Mugnier. The contest model image, the data delivered to the contestants and the rules are described as well as the results of the image reconstruction obtained by each method. These results are discussed as well as the strengths and limitations of each algorithm.Comment: To be published in SPIE 2010 "Optical and infrared interferometry II

    The VLTI / PIONIER near-infrared interferometric survey of southern T Tauri stars. I. First results

    Get PDF
    Context : The properties of the inner disks of bright Herbig AeBe stars have been studied with near infrared (NIR) interferometry and high resolution spectroscopy. The continuum and a few molecular gas species have been studied close to the central star; however, sensitivity problems limit direct information about the inner disks of the fainter T Tauri stars. Aims : Our aim is to measure some of the properties of the inner regions of disks surrounding southern T Tauri stars. Methods : We performed a survey with the PIONIER recombiner instrument at H-band of 21 T Tauri stars. The baselines used ranged from 11 m to 129 m, corresponding to a maximum resolution of 3mas (0.45 au at 150 pc). Results : Thirteen disks are resolved well and the visibility curves are fully sampled as a function of baseline in the range 45-130 m for these 13 objects. A simple qualitative examination of visibility profiles allows us to identify a rapid drop-off in the visibilities at short baselines in 8 resolved disks. This is indicative of a significant contribution from an extended contribution of light from the disk. We demonstrate that this component is compatible with scattered light, providing strong support to a prediction made by Pinte et al. (2008). The amplitude of the drop-off and the amount of dust thermal emission changes from source to source suggesting that each disk is different. A by-product of the survey is the identification of a new milli-arcsec separation binary: WW Cha. Spectroscopic and interferometric data of AK Sco have also been fitted with a binary and disk model. Conclusions : Visibility data are reproduced well when thermal emission and scattering form dust are fully considered. The inner radii measured are consistent with the expected dust sublimation radii. Modelling of AK Sco suggests a likely coplanarity between the disk and the binary's orbital planeComment: 19 pages, 11 figure

    Why Chromatic Imaging Matters

    Full text link
    During the last two decades, the first generation of beam combiners at the Very Large Telescope Interferometer has proved the importance of optical interferometry for high-angular resolution astrophysical studies in the near- and mid-infrared. With the advent of 4-beam combiners at the VLTI, the u-v coverage per pointing increases significantly, providing an opportunity to use reconstructed images as powerful scientific tools. Therefore, interferometric imaging is already a key feature of the new generation of VLTI instruments, as well as for other interferometric facilities like CHARA and JWST. It is thus imperative to account for the current image reconstruction capabilities and their expected evolutions in the coming years. Here, we present a general overview of the current situation of optical interferometric image reconstruction with a focus on new wavelength-dependent information, highlighting its main advantages and limitations. As an Appendix we include several cookbooks describing the usage and installation of several state-of-the art image reconstruction packages. To illustrate the current capabilities of the software available to the community, we recovered chromatic images, from simulated MATISSE data, using the MCMC software SQUEEZE. With these images, we aim at showing the importance of selecting good regularization functions and their impact on the reconstruction.Comment: Accepted for publication in Experimental Astronomy as part of the topical collection: Future of Optical-infrared Interferometry in Europ

    Phase Referencing in Optical Interferometry

    Full text link
    One of the aims of next generation optical interferometric instrumentation is to be able to make use of information contained in the visibility phase to construct high dynamic range images. Radio and optical interferometry are at the two extremes of phase corruption by the atmosphere. While in radio it is possible to obtain calibrated phases for the science objects, in the optical this is currently not possible. Instead, optical interferometry has relied on closure phase techniques to produce images. Such techniques allow only to achieve modest dynamic ranges. However, with high contrast objects, for faint targets or when structure detail is needed, phase referencing techniques as used in radio interferometry, should theoretically achieve higher dynamic ranges for the same number of telescopes. Our approach is not to provide evidence either for or against the hypothesis that phase referenced imaging gives better dynamic range than closure phase imaging. Instead we wish to explore the potential of this technique for future optical interferometry and also because image reconstruction in the optical using phase referencing techniques has only been performed with limited success. We have generated simulated, noisy, complex visibility data, analogous to the signal produced in radio interferometers, using the VLTI as a template. We proceeded with image reconstruction using the radio image reconstruction algorithms contained in AIPS IMAGR (CLEAN algorithm). Our results show that image reconstruction is successful in most of our science cases, yielding images with a 4 milliarcsecond resolution in K band. (abridged)Comment: 11 pages, 36 figure

    High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT)

    Get PDF
    (abridged) A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT - the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope, a detector with a large field of view made of small movable CCDs located around a fixed central CCD, and an interferometric calibration system originating from metrology fibers located at the primary mirror. The proposed mission architecture relies on the use of two satellites operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations (alternative option uses deployable boom). The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits. The remaining time might be allocated to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys.Comment: Accepted for publication in Experimental Astronomy. The full member list of the NEAT proposal and the news about the project are available at http://neat.obs.ujf-grenoble.fr. The final publication is available at http://www.springerlink.co
    corecore